My Precious Crash Data: Barriers and Opportunities in
Encouraging Autonomous Driving Companies to Share
Safety-Critical Data

HAUKE SANDHAUS, Cornell University, Cornell Tech, USA

ANGEL HSING-CHI HWANG, University of Southern California, USA
WENDY JU, Cornell Tech, USA

QIAN YANG, Cornell University, USA

Safety-critical data, such as crash and near-crash records, are crucial to improving autonomous vehicle (AV)
design and development. Sharing such data across AV companies, academic researchers, regulators, and the
public can help make all AVs safer. However, AV companies rarely share safety-critical data externally. This
paper aims to pinpoint why AV companies are reluctant to share safety-critical data, with an eye on how these
barriers can inform new approaches to promote sharing. We interviewed twelve AV company employees who
actively work with such data in their day-to-day work. Findings suggest two key, previously unknown barriers
to data sharing: (1) Datasets inherently embed salient knowledge that is key to improving AV safety and are
resource-intensive. Therefore, data sharing, even within a company, is fraught with politics. (2) Interviewees
believed AV safety knowledge is private knowledge that brings competitive edges to their companies, rather
than public knowledge for social good. We discuss the implications of these findings for incentivizing and
enabling safety-critical AV data sharing, specifically, implications for new approaches to (1) debating and
stratifying public and private AV safety knowledge, (2) innovating data tools and data sharing pipelines that
enable easier sharing of public AV safety data and knowledge; (3) offsetting costs of curating safety-critical
data and incentivizing data sharing.
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1 INTRODUCTION

Sharing data of crashes and near-crashes holds great potential to improve autonomous vehicle
(AV) safety research and oversight [52, 65, 72, 74]. Without sufficient safety-critical data, AV
safety performance could drop significantly. For example, prior research shows that insufficient
corner cases in the training data could cause the accuracy of object detection models to drop to
12.8% mean Average Recall, resulting in unsafe driving conditions [56]. This led to the release of
CODA!, a public dataset of real-world road corner cases for object detection in autonomous driving.
Similar movements toward open-sourcing safety-critical data allow researchers across industry
and academia to jointly investigate the causes of hazardous AV driving conditions. The increased
availability of such data can also facilitate AV designers and developers to conceive preventative
solutions before life-threatening accidents occur.

To date, AV companies rarely share safety-critical data externally. While policies mandate sharing
specific types of AV safety-critical data, companies rarely share beyond the minimal requirements
[23, 35]. Recognizing this problem, grassroots movements have started crowdsourcing information
about AV crashes and near-crashes [3]. AV safety researchers have started curating and sharing data
of simulated crashes [26, 39, 47]. Others have started developing data tools that make data sharing
easier [9, 25, 91]. These approaches have been highly valuable and impactful. Yet questions remain:
Why haven’t AV companies started to share their safety-critical data externally and systematically,
given the now available data-sharing tools? What other approaches might get companies to do
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so? What steps are necessary to transform AV safety data into a public good, akin to how vehicle
safety features such as seatbelts transitioned to standard safety features [6]?

This paper aims to pinpoint why AV companies are reluctant to share safety-critical data, with
an eye on how these barriers can inform new approaches to promote sharing. Toward this goal, we
interviewed twelve AV company employees who work with safety-critical data for AV design and
deployment in their day-to-day work. The interviews focused on understanding their current data
management and sharing practices, the challenges and concerns for safety-critical data sharing
they have encountered, and the ideal data sharing practices they wish for.

Our interviews identified two key, previously unknown barriers to AV data sharing. Both under-
score that AV companies’ lack of incentive to share data—more so than the pragmatic challenges
around how to share it—as a primary reason behind the rarity of data sharing. First, an AV com-
pany’s crash and near-crash data inherently embed knowledge about the machine learning (ML)
models and infrastructure that the company uses to improve AV safety. Therefore, such datasets are
resource- and knowledge-intensive to curate. Data sharing, even within a company, is political and
fraught. Second, interviewees believed AV safety knowledge is private knowledge that brings com-
petitive edges to their companies. This perspective leads them to view safety knowledge embedded
in data as a contested space rather than public knowledge for social good.

Re-framing the challenges of AV safety data-sharing as a problem of incentives (why share?) rather
than a problem of tools (how to share?) illuminates new approaches to addressing these challenges.
We see a need for AV safety-related communities—academics, policymakers, AV companies, the
general public, etc.—to debate and stratify public and private AV safety knowledge. For example,
what AV crash data must be shared with regulatory agencies or other AV companies so that similar
accidents will not occur? We see an opportunity for researchers and practitioners to shift data-
sharing incentives. First, by removing key negative incentives, researchers can develop data tools
and sharing pipelines that make it easier to distinguish public and private knowledge embedded
in AV datasets. For example, by building shared virtual platforms that encode crash-prone road
scenarios, allowing companies to share knowledge/data about safety-critical situations without
exposing their preparatory ML models that handle these situations. Second, by exercising strategic
influence through standardizing AV safety assessment. Third, responsibility for data sharing could
be relieved through strategic collaborations with academic institutions as data intermediaries.
Finally, by directly informing policymakers on how to craft data-sharing mandates that balance
public safety with industry competitiveness. These approaches aim to reframe AV safety-critical
data sharing as a public good rather than a solely competitive asset. This paper discusses these
potential new approaches to improving data sharing, drawn directly from our interview findings.

We make two contributions. First, we reveal the fundamental causes that hinder sharing of
safety-critical AV data. This informs more targeted approaches to motivating data-sharing practice.
Insofar, we highlight three plausible means: defining public vs. private data knowledge, redirecting
the design goals of data-sharing tools, and executing incentive programs. Grounded on these
actionable proposals, we call for attention and input from the data work community to make
cross-industry-academia data-sharing practices in safety-critical domains more commonplace.

2 RELATED WORK

To date, there is no one agreed-upon, precise definition of “AV safety-critical data” across existing
literature. Instead, researchers have used the term to broadly refer to data recorded from AV crashes
and near-crash events [2, 53, 79, 88]. These incidents can occur when various instances of unseen
objects, circumstances, and behaviors occur, such as drivers violating traffic rules, demonstrating
unsafe driving behaviors, driving under extreme weather conditions, novel objects on roads, or
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less-common, out-of-context behavior by traffic participants [11, 16, 79, 93]. In this paper, we use
“AV safety-critical data” to refer to such data as well.

2.1 Benefits of Sharing Safety-Critical Data

Availability of safety-critical data is key to facilitating AV safety research, collaboration, and
oversight [1, 54, 56, 64]. The automotive research community has advocated for AV companies to
share and provide access to such data and called for standardizing data formats such that they can
be most useful for improving AV design [29].

Existing research has shown the promise of such data for AV safety design, e.g., by adversarial
generation of safety-critical events in simulation, and showing the improved performance by
re-training on them [43, 87]. This data can allow an end-to-end approach to improving autonomous
driving, building machine learning (ML) models that use driving context data and generate safer
AV driving behaviors [17]. Moreover, AV researchers and regulators need AV safety-critical data
to investigate reasons for crashes (e.g., Uber’s 2018 fatal crash analysis by Macrae [61]), assign
responsibilities, and devise strategies for preventing similar incidents.

The automotive research communities depend on real field data to further user-centered design
for AVs [30], and maintaining scientific integrity necessitates adherence to open data practices [29].
This paper investigates whether and why sharing these data types remains limited despite these
numerous benefits.

2.2 The Lack of Safety-Critical Data Sharing

Despite the above-mentioned promises, abundant evidence shows that safety-critical data remains
mostly unavailable to the greater AV research and design community [40, 56]. Several policies
in place uphold this status quo. The current AV testing policies in Europe and the United States
demand minimal crash test data sharing. But, such data seldom fully capture underlying factors that
cause safety-threatening events [12, 21, 68]. Often, required data types are limited to descriptive
statistics and general information, such as the month when an AV crash occurred, the manufacturer
involved, and whether there were injuries.

Furthermore, officially designated means for data collection do not support recording rich forms
of data. Thus, datasets published through government authorities often lack adequate details
to inform AV safety design. For instance, AV companies are required to report safety-critical
events through text documents (e.g., DMV OL 316 [13, 63] and the DMV autonomous vehicle
incident web form [14]) in the United States. At most, these forms provide information such as
crashes per mile without further details about each incident [41]. New European policies have
mandated that all European-sold vehicles with higher-level automated systems include Event Data
Recorders, colloquially known as 'Black boxes.” However, data collected through these devices do
not capture detailed information about the location, trajectory, time, or context of safety-critical
events [12, 33, 34].

Under these regulations, companies share little beyond the minimal requirements. Recent re-
views suggested that datasets shared across the AV industry mostly consist of everyday driving
records only, rather than those highlighting safety concerns [52, 55, 91]. As a result, even the most
comprehensive datasets on AV crashes (see Table 3 from [93]) lack critical details about safety
hazards. For example, they do not provide the exact time of the crash, information about the safety
driver, speed at the moment of the crash, or micro-location and detailed time-series and movement
data.

Insufficient data-sharing is reflected in two common phenomena: First, there are grassroots
movements to crowdsource safety-related data. For example, websites are collecting data on deaths
involving Tesla’s Autopilot [3], and another web tracking automation incidents [22]. Second, due to
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Fig. 1. Left: OL 316, DMV report form for AV collisions (page 1/3). Right: DMV form for the general public to
report AV incidents.

the lack of real safety-critical data, existing studies have resorted to using simulated data to enhance
AV safety design. Past research has created crash scenarios by introducing virtual anomalies on
roads [10], [60], such as the StreetHazard dataset [46], while some researchers have relied on police
reports to roughly reconstructing crash scenarios [36, 37].

Together, several studies and reviews of datasets have concluded that the availability of safety-
critical data is inadequate for ensuring reliable AV design [40, 52, 55, 56, 91]. An overview describing
the categories of public and open-sourced safety-critical data sources available to AV researchers is
provided in Table 1.

2.3 Barriers to Sharing Safety-Critical Data

To encourage AV companies to share data beyond the mandated minimum, we need further
understanding of data-sharing obstacles in three aspects. First, it is essential to explore why the
known benefits of data-sharing are not sufficiently motivating. Historically, there are instances
where data and knowledge sharing have created collective benefits for the autonomous industry.
For example, Volvo’s Nils Bohlin relinquished the original safety belt patent, allowing it to be
shared freely [6]. This act of sharing has reportedly saved millions of lives.

Second, while there are known barriers to general data-sharing in the automotive industry, it
remains unclear whether these barriers generalize to sharing AV safety-critical data. The primary
barriers to general data sharing fall into several categories. Organizational barriers include lack of
expertise or resources needed for effective data sharing [28, 70], as well as organizational cultures
that resist open data practices. Technical barriers encompass challenges in data storage, processing,
and movement between systems [77], particularly given the scale and complexity of automotive
data. Legal and regulatory barriers include privacy legislation, intellectual property concerns, and
compliance requirements that limit what data can be shared and how [49, 77, 80]. Finally, there
might be unknown obstacles that discourage data-sharing practices. We set off our study to reveal
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Proactive Identification

Reactive Discovery

Data Enrichment

Reports In the future AV event data AV crash reports [63, 88], Augmenting reports with
about recorder triggered events, police and news additional data (e.g. location
autonomous  however data will only be reports [36, 37, 48], information [84, 92])
vehicles released by court order [12] crowd-sourced [3]

Driven Classification of Not possible with monocular Modeling human driver
vehicle manual-driven vehicle near dashcam video behavior from manual
(dashcam) crash events [2, 42, 75, 81, 82] drives [11, 51], sourcing

difficult objects from
video [58]

Test vehicle

No real world autonomous
driving safety critical dataset

No real world in-loop
autonomous driving safety
database

Enriched AV dataset (e.g. extra
labels or scenes [8, 10, 56])

Simulation Manual scenario design (out of ~Anomaly in simulation (e.g. Automated augmentation from
Environ- domain objects, in domain crash [5, 25] including ‘real’ road safety critical events
ments objects in unique adversarial discovery of e.g. from dashcams [4, 25, 79]

configurations, weather such [24, 43, 87])

conditions [25, 46, 60, 73])

Table 1. Academic AV researchers rely on sourcing safety-critical driving data from public and open-sourced
data.

and contrast such additional challenges. Without a fundamental understanding of these data-
sharing barriers, it remains challenging to motivate data-sharing practices effectively. Although
various solutions have been proposed, their effectiveness is often limited by a lack of comprehensive
understanding of the specific obstacles and resistance within the industry.

2.4 Facilitating Safety-Critical Data Sharing

Emerging work in autonomous driving has focused primarily on developing technical tools to
enable sharing of critical safety data. For instance, researchers have introduced federated learning
models for sharing AV sensor data [57], blockchain protocols for secure dashcam video exchange
[52], and other approaches to address scale and privacy barriers in AV data [38, 59]. Due to the
scarcity of real-world safety data, researchers have also developed methods to generate synthetic
safety-critical scenarios by introducing virtual anomalies on roads [10, 46, 60], reconstructing crash
scenarios from official reports [36, 37], and enhancing crash datasets with additional contextual data
[84, 92]. While these technical approaches address important aspects of data sharing, they often
overlook the organizational and governance processes necessary for successful implementation.
In contrast, other safety-critical industries have developed comprehensive frameworks that
integrate both technical and organizational dimensions of data sharing. The aviation industry has
evolved sophisticated incident reporting systems that emphasize non-punitive reporting, stan-
dardized formats, and clear governance structures [62, 86]. Their progression from black boxes
to Flight Data Monitoring demonstrates how continuous learning can be institutionalized across
competing entities through appropriate processes. Similarly, healthcare has established clinical
data registries and adverse event reporting structures that carefully balance privacy concerns with
the need for collective learning [67]. CSCW researchers studying work practices across domains
have emphasized that successful data sharing depends on human expertise and tacit knowledge
[66, 85], often facilitated by trusted intermediaries who manage boundaries between stakeholders
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[20, 27]. These cross-industry examples suggest that technical solutions alone are insufficient
without corresponding organizational frameworks and social practices.

This gap between technical capabilities and organizational readiness has prompted increasing
calls for more comprehensive approaches to AV data sharing. Hansen and Pang [44] note that
industrial data sharing requires context-specific approaches rather than direct application of
models from academic, governmental, or other sectors. Recent workshops explicitly addressing
challenges of data sharing in automotive contexts [29] and methods for obtaining industry data for
research [50] underscore the growing recognition of this issue. As the types of safety-critical data
currently available from public sources show reliance on creative workarounds (summarized in
Table 1), significant questions remain about how to design effective data-sharing frameworks that
respect competitive concerns while maximizing collective safety benefits. These ongoing challenges
highlight the need to directly investigate the perspectives of AV industry stakeholders through
empirical research, which we address in our interview study.

3 METHOD

To understand the barriers to sharing safety-critical AV data, we interviewed twelve industry
insiders from twelve organizations who actively work on designing, developing, or researching AV
safety design with large-scale data. The motivation for our methods is rooted in the rich history
of Computer-Supported Cooperative Work research, which has extensively examined the work
practices of professionals in software and technology development and increasingly data and
machine learning work [45, 66, 71, 76].

To this day, very little research has investigated the work practices of autonomous vehicle data
workers. We fill this research gap in the present study. We unfold three primary topics with our
interview participants: (1) how they currently manage and work with AV safety-critical data, and
the common challenges they encounter through these current practices; (2) what attitudes and
rationales they hold toward sharing safety-critical AV data with the greater AV design and research
community; (3) what more desirable practices of working with data they would like to propose and
act toward.

Our interviews took place throughout 2023, a transformative phase in Al marked by innovations
such as ChatGPT. Concurrently, the autonomous vehicle sector witnessed volatility, including
layoffs at Waymo, the closure of the Argo Al venture, General Motors Cruise reducing their fleet
size due to incidents and ongoing delays in Tesla’s self-driving package [7, 69, 83].

3.1 Participants

We recruited participants through our extended professional networks to access insiders with
substantial insights into the competitive and specialized field of autonomous driving. All participants
were from different companies that were committed to developing fully autonomous vehicles. Our
wide range of participants design AVs in either conventional automotive companies or specialized
technology companies. Participants’ demographics and professional experiences were reported in
Table 2.

3.2 Interviews

We conducted our studies through video interviews, examining participants’ current practices and
exploring their data needs and barriers. The Institutional Review Board of the authors’ affiliated
institute reviewed and approved the study protocol. The interviews were 50-90 minutes long and
were semi-structured. The interview protocol will be available as supplementary material. We
ensured the interviewee’s anonymity, and the transcripts will remain private.
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ID Gender Project Function Company EXp. (years)

Classic Automotive Industry

1 Male AV design Research engineer Vehicle manufacturer (VM) ~8

4*  Male Distraction modeling  Data-scientist & AD department of VM X6
researcher

6  Male Vehicle perception Research scientist AD division of VM x

8  Male Driving performance  Interface researcher Research division of VM > 10

10 Male Behavior modeling Human factors Safety research division of VM =~ 12
researcher

12 Male Vehicle perception Computer vision AD department of vehicle ~ 15
engineer supplier

Specialized Autonomous Driving (AD) Technology

2 Male Technical direction Lead of AD research AD package provider > 10

3*  Male Lidar motion Algorithm engineer AD software developer B
estimation

5 Female Pedestrian behavior Qualitative researcher AD software and service > 10

developer

7  Male Cross project Infrastructure manager ~ Mixed-terrain AD provider > 15
alignment

9*  Male AD research Professor Driving specialized university =~ 8

11  Female AD annotation Engineering manager AD vehicle producer ~5

Table 2. Participant details. Asterisks (*) indicate academic affiliations. Company affiliations are obfuscated.

3.3 Data Analysis

We transcribed recordings of the interview sessions for data analysis. Utilizing an iterative inductive
coding method [15], two authors extracted initial codes and later used an affinity diagram to organize
them into themes. This approach was chosen over grounded theory because it allows themes to
emerge from the data without needing a predefined theoretical framework, enabling a more natural
identification of patterns relevant to our specific context.

We next applied journey mapping [31] to trace the workflows of how these practitioners manage
and work with mass-scale AV data.

We edited quotes within this paper lightly for clarity and readability. We removed speech
disfluencies but did not alter the meaning or context of the participants’ statements.

4 FINDINGS

Findings from the interviews suggested AV safety-critical data embedded several types of knowledge
that were crucial to advancing AV safety design. As such, our participants were mostly unwilling
to make such data publicly available, as they believed it should be private knowledge that yielded a
competitive advantage for an AV company. While AV safety has been a targeted item for fierce
competition across the AV industry, this only reinforced practitioners’ preferences to keep data as
internal resources. In contrast to common beliefs in prior literature, which proposed advancing
tools to unblock data-sharing barriers, the risks of revealing critical AV safety design knowledge
embedded in data are the root causes of practitioners’ hesitations.

We structure this Findings section as follows: We first provide an overview of our participants’
approaches to working with AV safety-critical data, informed by theory of data work practices [66].
Next, we examine the barriers widely reported in the literature and weigh them against the
experiences of AV data workers to determine if they are ’key’ or surmountable ( subsection 2.3).



Proc. ACM Hum.-Comput. Interact.,, CSCW 2025 Sandhaus et al.

This analysis offers essential context as we examine our findings in more detail. We then elaborate
on the key obstacles to data sharing as identified by our participants, particularly focusing on
the risks associated with sharing specific knowledge of AV safety design. Finally, we explore the
rationales provided by participants for treating such data as private property, rather than as a

public good.

What are the participants’ AV safety design work practices? First, most practitioners had
constant access to company-owned data sources (see Table 3). While massive data continuously
came in as data streams, they attained up-to-date data from these company-owned sources on
demand, instead of working with one-time, fixed datasets. All participants predominantly worked
with data collected by their own companies. Participant 2 (P2) elaborated, “Even the biggest
companies with a lot of money, vehicles, customers, and users, they still only have their data” to
work with.

Table 3 categorizes the approaches autonomous driving practitioners use to source safety-critical
driving data. We group them into three categories, to easily contrast the proprietary data that
practitioners use with the overview of publicly shared data shown in Table 1, which academic
researchers and policymakers rely on. These approaches are: proactively looking for safety-critical
data, e.g., by tuning the vehicle collection parameters remotely to send data in-house for specific
scenarios (such as vehicles overtaking in tunnels); discovering safety-critical data reactively, such
as annotation from a safety driver (“uncomfortable side swerve”); and enriching existing data to
create more safety-critical data, such as generating variations of safety-critical confluences.

All AV data practitioners had access to a basic AV data pipeline, which generally consists of
policies for data collection, targeted strategies to capture specific data, methods for organizing
and filtering the amassed data, systems for developing and refining Al models, mechanisms to
identify and respond to machine learning failures, and strategies for the long-term management
and application of the gathered data. Specialized AD companies offer more organizational support
for data work, such as implementing robust data governance frameworks, establishing dedicated
teams for real-time data monitoring, providing advanced tools for data wrangling and curation,
and facilitating ongoing training for AI model development and failure analysis (see Figure 2).
Practitioners gradually process data through small, repeated iterative steps involving collecting,
organizing, refining, reviewing, oversight, and repurposing data within a well-defined workflow
for safety-critical AV data tasks.

No practitioner reported using open and external safety-critical data for their AV design. Public
datasets were of low importance to most interviewees’ daily AV design work, except for P3 who
worked on autonomous driving algorithm improvements in affiliation with an academic institution.
Instead, practitioners applied these public datasets for non-design purposes, such as gaining visibility
for their work (P3, P7), facilitating training processes (P2, P8, P9), and setting benchmarks for
algorithmic performance (P3, P5).

What are surmountable barriers to AV data sharing? Many of the barriers discussed in
previous literature are recognized by our AV design insiders but not given the same weight as
prior literature; according to them, they are not key in hindering data sharing but false pretexts
to hinder sharing data. Within our interviewees, a lack of motivation and recognition of mutual
benefits to data sharing is not in the way; Participants unanimously recognized the benefits of
data sharing within their own roles, such as for research and also for the organization, such as
through cross-industry collaboration. For example, participants pointed to the economic absurdity
of hundreds of companies developing their own test platforms, driving around neighborhoods with
unoccupied test vehicles, and collecting data on the same streets repeatedly. Data sharing would
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Proactive Identification

Reactive Discovery

Data Enrichment

Deployed Preset vehicles to capture Document any instances Search through retained data,
vehicles specific circumstances, where drivers disengage. ie., filtering in labeled
?ollecting data for ongoing Capture bug reports and fiatab.ases, iden.tifying and
interest. . isolating occasions relevant
instances of autonomous X
Adjust vehicle data vehicle disengagement. to ongoing analyses.
collection settings remotely
based on current data needs,
waiting for specific scenarios
to occur.
Testing Conduct controlled drives Monitor and record any Recreate variations of known
vehicles under safety-critical interventions and feedback safety critical driving
situations such as varied from supervisors during test situations.
environmental conditions drives. . .
. Manually review test rides to
(hours, weather, locations). ..
Analyze autonomous source-related driving
Design and execute staged vehicle-initiated behavior.
scenarios such as accidents disengagements.
to collect crash data.
Simulation =~ Develop simulations from Analyze simulations for Automatically augment
environ- expert insights to model rare anomalies (e.g., crashes). simulations using real road
ment but plausible driving safety-critical events and

scenarios. randomized scenarios (e.g.,
introduce novel variety,

objects).

Table 3. Autonomous driving practitioners source safety-critical driving data using three general approaches,
from three sources, in contrast to academic AV researcher (compare with Table 1).

allow quicker and more efficient scaling since no AV company is currently deployed in all areas
with a sufficiently sized fleet.

“It would be a great thing for the research world because you would have data sets in
all the different countries and eliminate a lot of waste. Here in the Bay Area, it’s crazy
how many autonomous cars drive around and just collect the same data over and over. It
doesn’t really make sense from an overall economical perspective.” — P6

The most commonly discussed data-sharing barrier in street imagery literature is that of privacy
concerns; while the interviewees did recognize the innate nature of privacy risks of data sharing,
privacy, as protected by law, is not a key barrier. Most participants already protect individual road
users’ identities by blurring faces. In fact, they propose even stronger forms of privacy protection
or have already deployed privacy-enhancing technologies (PETs) within their infrastructure. With
sufficient care, privacy barriers are not insurmountable but maybe just a distraction or excuse
against data sharing. Last, while resource constraints on data architecture limit broad access to AV
data, existing tools can help overcome these challenges. Companies already implement strategies
like data minimization, aggregation, and local computation. These practices, as our participants
indicated, could be readily adapted to facilitate resource-efficient data sharing without significant
additional overhead.
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“Homomorphic encryption is also - they call it the holy grail of data privacy - it’s computa-
tionally intensive, but we’re working on accelerators to enable these to happen commercially
for particular use cases.” — P2

4.1 Too Entwined to Share: Risks of Publicizing AV Design Knowledge Are Key Barriers
to Data-Sharing

While these challenges are significant, they are not unmanageable; each company has established
technical and organizational solutions to mitigate these issues effectively. On top of these, practi-
tioners mentioned a more fundamental concern: Data inherently carried critical knowledge about
how their companies designed and developed AVs. The risk of leaking related design knowledge
primarily prevented them from sharing data.

Participants pinpointed at least four types of AV design knowledge that were embedded in
AV safety-critical data and could be revealed through data sharing; these include: (1) how their
company defined and operationalized AV safety; (2) how they constructed their ML infrastructure;
(3) where AVs were most susceptible to failure modes; (4) where a handover of safety liability could
take place.

These data practices directed changes in the organization of data across all stages. Refer to
how data work encodes precious competitive knowledge horizontally across the data pipeline in
Figure 2.

Stratification of data reveals diverse safety paradigms. In the pursuit of safety, AV companies
invariably encode substantial knowledge into their data, defining and operationalizing what groups
of data constitute safety-critical events. This encoding is not merely a technical process but a
reflection of strategic decisions unique to each company’s understanding of AV safety. Participants
first highlighted that there was no standard approach toward defining AV safety at scale, and
thus, how a company defined and operationalized this concept was a strategic decision of its own.
Likewise, there is no consensus on the causes of safety-critical events for autonomous driving.
Participants suggested these ideas were often reflected in how a company sourced data; specifically,
when and where data was collected indicated which scenarios were considered safety hazards by
an AV design team. For instance, P12 mentioned a serious AV collision that involved a bicycle or
motorcycle rider would likely result in the rider lying on the ground after being hit by the vehicle.
Therefore, identifying a person lying on the ground became a key indicator that helped their team
define this specific type of safety-critical event. However, such contextual knowledge might not be
widely shared by all practitioners.

Data sharing risks revealing the machine learning architecture. Likewise, participants
suggested that how data was collected, stored, and annotated indicated how it would later on be
used for ML development. Oftentimes, this revealed information about key parameters and data
structure of ML models. Practitioners also feared that “data carries knowledge downstream”. For
example, P12 suggested that “[one] could get insight on how all sensors are designed based on the
data” P1 further specified that data could even reveal information about models and prototypes
that have not yet been released:

“A lot of the data is off internal systems or, like, internal prototypes that haven’t ever made
it to production or of, you know, internal features, internal software sets, internal sensor
sets that haven’t been made to production. And so, we do not want any of that information
out in public either. So, none of those data sets can be shared.” — P1

Besides, many participants mentioned that their companies created their own suite of tools to
pre-process data for their ML models, and AV safety-critical data carried along knowledge about the
design of these internal tools. In P1’s company, data was collected and stored in a way that allowed
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Data pre-requisite knowledge Data tapping knowledge Data wrangling ML failure knowledge Data aftercare knowledge
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Data collection policy Data collection targeting Data sourcing Al model architecture Rule- based AV behavior Data retainment strategy
Sensor I design Real-til t i Data filtering Fine-tuning procedure Remote control procedure Test-data stack
Sensor fusion algorithms Anonymization procedure Data review procedure Transfer learning approach AV failure case detection Long-tail data
Al hardware optimization Encryption procedure Ground truth labelling strategy ~ Data augmentation Anomaly detection
Al hardware design Access protocols Labelling taxonomy Simulation data Closed-loop evaluation
Data curation Synthethic data

Fig. 2. AV developers are reluctant to share data, that encodes precious knowledge, across the industrialized
AV data pipeline.

their internal dashboard to readily parse out the time and location where safety-critical events
took place. Alternatively, all data at P11’s firm would first go through a system that automatically
triaged different types of AV crashes. Putting together, P8 suggested that AV companies “built these
automated systems because they had consistent goals and consistent perspectives on how they
want to use the data” for their AV design. On the flip side, attaining data would allow one to infer
the metrics, goals, and perspectives held internally at an AV company.

Data sharing risks revealing failure modes. According to our participants, AV safety-critical
data not only hinted at what constituted their AV design, but it also gave clues to how their design
might break and has failed in the past. Participants mentioned identifying bugs in their ML models
was a crucial step in improving the safety performance of AVs. As such, what their AV safety-critical
datasets entailed informed where their models were subject to mal-performance at the moment,
how they intended to debug such issues, and eventually, how they advanced AV safety.

“But then we need to identify what the issues are. And then a big part of my job was kind
of going through all the images that the model failed on. And so if it failed on it, you had
to go and triage why did it fail. And if there was a reason for why something failed, you
would then go in and add more images into the training set for that specific scenario. And
then redo the whole process, and then go over it again to see if the model failed on that
scenario again. And if it didn’t, then that meant that you fixed that issue. And then you
had to go through for the next issue and stuff like that. So a long process of iterating back
and forth between evaluation sets.” - P11

Data sharing risks revealing complex liability issues. Finally, participants mentioned that
safety-critical data could also entail information about legal liability. On one hand, owning more
data placed more responsibility on AV companies to improve the safety of their vehicles. On the
other hand, “a lot of these rare events are technically illegal actions by drivers” (P1). Many safety-
critical incidents took place when drivers were “not paying attention on the road” or “on their
phones when they were driving” Therefore, participants acknowledged that making such data
available would raise complex questions about who should be held accountable for AV safety-critical
events. Consequently, drivers might backfire and become unwilling to grant permission to collect
their data.

4.2 Concerns About Sharing AV Safety-Critical Data as a Public Good

In addition to the key barrier of potentially sharing sensitive information related to AV design—such
as strategic approaches, infrastructure, failure modes, and liability issues—working with safety-
critical data transforms it from a readily available asset into a highly valuable resource.

Data work produces intellectual property that makes data too insightful to share. Partici-
pants believed their deep engagement with the safety-critical data justified its treatment as private
assets. While they acknowledged on-road safety as a public good, the process of handling data
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reshaped it as intellectual property and a competitive advantage for AV companies, which caused
reluctance for data-sharing.

How do AV companies establish competitive edges through the ways they work with safety-
critical data? Our participants indicated three common means:

(1) Remarking areas in need of new design solutions. Many of our participants admitted pin-
ning down design problems for AV safety improvement could often be more time- and resource-
consuming than generating the solutions per se. Knowing what is considered safety-critical is
already part of the solution. As P2 and others elaborated, a variety of contextually specific factors
could cause hazardous driving conditions, ranging from light and environmental conditions, un-
usual objects and animals, and atypical traffic to individual pedestrians’ and drivers’ behaviors.
Identifying on-point design problems required understanding the full picture of driving scenarios.
The types of data later on used for safety-critical design summarized AV designers’ and developers’
insights into the primary causes of safety-critical events.

“So, this is basically raw data. There’s no labeling, for example, for a critical incident.
There’s no labeling that there was a takeover failure. So, for every analysis that is being
made on top of the raw data, you have to define yourself. If you want to know, for example,
triggers of a takeover request, then you would need to look into data for these and then
you would need to define your labels in that case. There’s no annotation that is somehow
magically annotating videos.” — P4

(2) Identifying safety-critical events from mass data streams. Participants suggested that even
identifying related safety-critical events per se from vast data streams is a resource- and expertise-
taxing effort. As P7 elaborated, there was no handy way to “look for the top 20 scenarios when a
vehicle struggled” This is because AV data not only came in with massive volume but also widely
differing data structures. Therefore, having a “database that is searchable with a fairly wide set
of parameters” would be a tremendous help for AV designers and developers to identify critical
events among mass data.

Indeed, most organizations used specialized tools to help with these onerous tasks, such as
searching and querying scenarios, labels, and conditions related to safety-critical events. However,
even creating “a tool that allows you to query across all those different diverse data and data
protocols, considering past and future data, is challenging” (P7). Furthermore, P2 suggested the
design of each tool embedded “lessons learned when you encountered a specific AV safety problem.”
Many of our participants’ companies had dedicated teams to work on creating effective tools with
vast data streams, while most spent a substantial amount of their budgets to procure external
tools, hire expert contractors, or even acquire specialized start-ups. Although several participants
indicated their companies held the ultimate goal to “automate all manual steps in between” data
work (P11), they also admitted the job of identifying safety-critical events will remain highly
labor-intensive in the foreseeable future.

(3) Herding unrevealed AV design insights. Participants also acknowledged insights from data did
not always become apparent in the first place. The fact that practitioners took a long time to gauge
the value of a dataset was reflected in one of their common work practices - they seldom absorbed
data at once and constantly revisited and wrangled with data. Before fully figuring out the utility
of their data for safety design, most practitioners would hold up with their data given its potential
competitive edges or would be advised by their stakeholders (e.g., OEMs) to do so.

Competitive politics in the AV industry drive a secrecy mentality. Participants suggested that
fierce competition across the AV industry reinforced the importance of establishing competitive
edges through safety-critical data. Each believed their company-owned data gave them unique
competitive advantages to tackle AV safety and generate one-of-a-kind solutions. While they
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acknowledged on-road safety as a public good, the process of handling data reshaped it as intellectual
property and a competitive advantage for AV companies, which caused reluctance for data-sharing.

“The data is the new gold, because using the data, you can develop the solutions. And if
you’re the first to develop the solutions, it means you’re the first to go to market.” — P2

Revisiting the AV companies’ AV safety design work practices, all heavily invested in their private
data sourcing. All major data work occurs siloed from any publicly available data (contrast Table 3
with Table 1). Participants were entrenched in a mindset that could not envision a future where
treating AV safety critical data as public good and competing on different grounds was feasible.

“Everybody thinks they have a unique competitive advantage. I guess everybody is hoping
they have the only dataset that has all the secret information. Those data are considered
valuable. And everybody is not willing to share them.” — P12

Many participants believed their organizations held leading positions in specific types of data
work knowledge, although they also acknowledged no company was advantageous in all aspects.
As P2 elaborated, “each [autonomous] vehicle out there is contributing to solving a particular [AV
design] problem.”

Hence, each AV company could claim unique competitive advantages through specific types of
data work knowledge, such as: a unique data collection policy (P2, P11), data refinement strategies
on hardware and software levels (P2, P4), unique tooling for re-targeting data collection targets in
the fleet (P8, P11), leading anonymization and data encryption procedures (P2), data sourcing and
filtering tools (P5, P11, P12), leading data labeling procedures and taxonomies (P5), safe rule-based
AV algorithms (P3, P7), secret Al architecture (P5, P11), fast closed-loop evaluation methods (P7),
transfer learning to scale between countries and cities (P11), field-tested synthetic data augmentation
approaches (P7), or knowledge about dealing with the scale of data unlike other industries (P6,
P11). In summary, a lot of AV companies felt they were ahead of the competition with some crucial
safety-critical data knowledge (See the instances of secretive safety-critical data work practice
vertically within the AV data pipeline (Figure 2).

In conclusion, AV safety has typically been viewed as the frontier of AV design innovation, and
being able to act upon safety-critical data needs rapidly has become the key competing ground, as
the expensive organizational decisions outlined by one of our interviewees suggested:

“Initially they were outsourcing the labeling. But then there was a big push of keeping the
data in-house and also investing in an in-house data team. We had our whole called data
annotation org, which was 600 700 people, All of the team was in the US, for quality, speed
and safety reasons.” — P11

4.3 Opportunities to Overcome Key Barriers to Data Sharing

However, even under this competitive landscape, participants still saw the possibilities and advan-
tages of collaborations. They coined the term “untrusted collaborations” and believed these types of
strategic partnerships would more likely take place when data-sharing was not a prerequisite. For
example, teams at P2’s company worked on building federated learning models that allowed differ-
ent organizations to share lessons learned from data without directly sharing their safety-critical
data. They elaborated with further details:

“ Essentially, it’s a way to allow learning from data but in secure enclaves, so that you're
not essentially stealing the data or sharing the data. But what you’re doing is [...] sharing
a common solution, which is maybe a model. And then I'm going to enable that model to
be training my data. And then I'm going to benefit from that, that model being improved
on my data without you having to share the data.” — P2
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Participants mentioned similar approaches have been adopted in the healthcare domain, leading
to significant, “30 to 40% improvements on the performance of these algorithms by learning from
these siloed datasets.” Echoing this potential in the realm of autonomous driving, P6 envisioned a
scenario akin to the development of language models like ChatGPT: “If you could have hundreds of
thousands of kilometers in different countries with decent ground truth, you could build something
like the ChatGPT, we still don’t have that in autonomous driving”

Only through open data can such expansive and transformative projects be envisioned. According
to interviewees, they saw the blame not just on their side, but criticized the academic community
for its lack of transparency and pointed to steps toward improved industry-academia data sharing.

These include increased open access rigor in university research collaborations, with “centralized
data repositories” (P9), “explicit open source benchmarks”(P8), “standardization efforts” in data
sharing (P4), encouragement of “replicability in research” (P6) leading to a more general “apprecia-
tion of collective problem solving” (P2). These safety critical data sharing opportunities painted a
more plausible future for practitioners to collectively contribute to advancing AV safety design.

5 DISCUSSION

Findings from the present study show practitioners’ reluctance to share safety-critical data is not
merely a technical or procedural issue; it is indicative of a deeper need for a paradigm shift.

Prior work has concentrated on developing tools to facilitate data sharing, yet our findings
indicate a different challenge: safety-critical data inherently embeds specific AV safety design
knowledge. This nature of data causes fundamental obstacles to data sharing, as practitioners fear
sharing data would share specific knowledge about AV design knowledge. The view of safety-critical
data strictly as a competitive advantage rather than public knowledge immobilizes practitioners
from sharing data that could significantly advance public AV safety design.

Based on these key findings, we discuss new approaches to motivating data-sharing practices
in safety-critical data design. We recommend alternative directions for technical solutions, AV
safety assessment, and legislative interventions. Furthermore, we summarize key takeaways for
automotive researchers and the data work community and suggest actionable items they can adopt
in their research processes going forward. Together, we envision a future where the competitive
landscape of the AV industry can be leveraged for the collective good.

5.1 Proposed Approaches to Motivating Data-Sharing Practices

Grounded in our findings and the theory of open data work and open data intermediaries [27, 66],
we suggest targeted strategies to motivate safety-critical data-sharing. These approaches recognize
the identified key barriers and opportunities, rather than focusing on the surmountable barriers
known in prior literature (see section 4). Specifically, we build on existing efforts (i.e., technical
solutions, work practices, and relevant policies) that address this issue and propose new directions
for each. We recommend new approaches to (1) debating and stratifying public and private AV
safety knowledge, (2) innovating data tools and data sharing pipelines that enable easier sharing
of public AV safety data and knowledge; (3) offsetting costs of curating safety-critical data and
incentivizing data sharing.

Protecting data-sharing from knowledge-sharing. We first suggest that researchers and de-
velopers conceive technical solutions that enable sharing data without sharing design knowledge,
given that abundant prior work has already been dedicated to developing novel data-sharing tools
that address scale and privacy concerns [38, 59]. Our findings suggest that prior efforts might
not directly address practitioners’ concerns (i.e., possible leaks of AV design knowledge), as these
proposed tools mostly target smoothing the process of data sharing. This distinction between
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data artifacts and embedded knowledge is crucial—while sharing raw sensor readings may seem
straightforward, our participants revealed that this data implicitly contains proprietary design
approaches and decisions. This insight explains why technically sound data-sharing solutions have
struggled to gain traction: they address data logistics but not knowledge protection. Developers
should now pivot towards methodologies that can decouple safety-critical data from other intricate
knowledge it carries, ensuring that data utility is preserved while safeguarding competitive insights,
for example, by adopting scenario-based testing [48], for safety-critical instances.

Assessing AV safety without accessing data. While, on the current path, limited data-sharing
will likely continue in the near future, advancing AV safety cannot wait. We ask whether there can
be alternative approaches to leveraging safety-critical data from AV companies without having
them directly share their data. As existing work has made many attempts to simulate environments
and scenarios for AV development and testing [26, 39, 47, 89], we encourage practitioners to
contribute jointly to building standardized simulated platforms for AV safety assessment. Although
AV companies may be resistant to sharing data, they have a self-serving interest in shaping
the standards by which they are evaluated by the public, their funding sources, and regulatory
bodies. This might allow practitioners to apply insights they acquire from AV safety-critical data
without sharing data first-hand and will also permit robust steps toward AV-safety certification.
Establishing clear, recognized benchmarks for safety performance in AV development could have a
transformative impact on fostering industry-wide collaboration and advancing public safety. The
rapidly advancing field of open-source large language models, which generally rely on closed data
while competing on shared benchmarks, could serve as a model for this initiative.

Academic institutions as data intermediaries. Successful open data practices, as seen in
nonindustry contexts [18, 19, 27], highlight the role of intermediaries in ensuring data integrity
and accessibility. Building on these models, industry stakeholders can leverage the expertise and
openness of academic researchers by forming strategic partnerships that involve limited data
sharing for specific safety-critical purposes, rather than releasing complete raw data. In these
collaborations, academic researchers can take on the role of intermediaries responsible for ensuring
that shared data meets open-access and reproducibility standards. This approach addresses the
current “data drought” in academic research (see Table 1) and gradually guides the entire sector
toward the standardization of safety-critical data. Our findings indicate that the beneficiaries of
such data collaborations should uphold open-data principles; academic partners must be resolute
in refusing any agreements that lack commitment to publishing adequate, replicable datasets.
Unlike in healthcare—where widely accepted performance benchmarks exist (e.g., cancer prediction
scores)—no equivalent standards currently frame the assessment of safety-critical AV data. Our
interviews suggest this limited academic-industry collaboration model offers business value for
companies while serving public safety interests—several participants specifically noted they would
be more open to sharing with academic partners because it offered reputational benefits while
limiting direct competitive exposure.

Incentivizing data-sharing through policy frameworks and regulatory approaches. Our
findings also show great potential for policy interventions to incentivize data-sharing, enhancing
the effectiveness of the above-proposed strategies. Toward this goal, we first encourage practitioners
to reflect on successes in other technological domains, such as healthcare and cybersecurity, where
legislative and policy frameworks have facilitated substantial progress [90]. We ask whether similar
initiatives can be modeled after in the AV industry. Second, we recommend active comparisons
across different legislative frameworks as productive practices. For example, the European Union
has advanced a more unified approach to data governance through the EU Data Act [32], which
establishes structured pathways for the sharing of data that was previously subject to protection. By
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contrast, in the United States, relevant legislation is primarily enacted at the state level. This allows
for regulatory flexibility tailored to local contexts, but it also poses challenges for implementing
consistent, large-scale data-sharing frameworks across jurisdictions [35, 78].

Our interviewees consistently highlighted that a lack of incentives remains a major hurdle
for data sharing. We propose that researchers in data work and transportation should focus
on helping policymakers design tiered data-sharing strategies that distinguish between safety-
essential knowledge (which should be shared) and competitive design insights (which may remain
proprietary). Specifically, researchers can begin by advising policymakers on redesigning the means
that guide the collection of minimally required public data (Figure 1) and researching autonomous
vehicle safety databases, platforms, and tools. Implementing incentive programs that can help offset
the costs of data collection will likely provide immediate motivation for data-sharing.

5.2 Limitations and Future Work

Although we aimed for a diverse sample of industry practitioners in autonomous vehicle design, this
interview study could be skewed by the interviewees we were able to engage. While all participants
were recruited from different companies, we relied on personal networks for referrals, as open
sampling proved difficult due to companies’ interest in protecting intellectual property. This might
bias the findings to a group of participants who are more open to discussing proprietary practices.
These interviews also present a Western viewpoint and exclude processes and attitudes in the
East and Global South. Lastly, the study relied on interviews and could benefit from ethnographic
observation of data work practices to cross-verifying the accuracy of the practices and perceptions
shared by the participants.

The present study identified novel key barriers and opportunities to AV data sharing; future
work should build from the discussion, explore what types of data can be shared and under which
conditions, and specify what safety-critical data needs to be shared for sufficient safety research
and oversight, to realign power imbalances.

6 CONCLUSION

Our study reveals significant barriers that prevent autonomous vehicle (AV) companies from sharing
safety-critical data, despite the clear benefits of such sharing for advancing AV safety. Through
interviews with industry insiders, we identified two primary obstacles: the inherent embedding of
critical knowledge within the data and the perception of safety knowledge as a competitive asset
rather than a public good.

These findings highlight the need for a paradigm shift in how data sharing is approached. Rather
than focusing solely on technical solutions to facilitate data exchange, it is essential to address
the underlying incentives and strategic concerns of AV companies. We propose concerted efforts
from academics, policymakers, and industry practitioners to create technical solutions, policy
interventions, and collaborative frameworks to mitigate these barriers.
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